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Studying crystal plasticity with MD

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Dislocations: a multi-scale modelling problem
• Long-range interactions, collective behavior
• “Core effects” on the atomic scale
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109 atoms

Large-scale MD 
includes all!

Zepeda-Ruiz et al., Nature 550 (2017), 492
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Our analysis needs
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§ Detection and visualization of crystal 
twinning

§ Tracking crystal rotation

§ Identifying dislocation lines / measuring 
defect densities

§ Tracking dislocation motion

Common neighbor analysis (CNA) atom filtering

Non-atomistic representations of crystal defect structures

Ideally do these on the fly!

slip

Zepeda-Ruiz et al., Nature 550 (2017), 492
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MD simulation of Ta crystal 
being strained at a 
supercritical rate

~33M atoms
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Grain segmentation algorithm
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Input Output

Atomic-level lattice orientation
(from e.g. CNA or PTM structure identification methods)
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Dislocation defects
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?

Atomistic picture of dislocations Discrete dislocation line theory

! =
1
#$%&

How to measure 
dislocation content in 
MD simulations?
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Dislocation Extraction Algorithm (DXA) in OVITO
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Defect core

Perfect 
crystal lattice Delaunay 

tessellation

Dislocation line

Burgers 
vector

2012 Stukowski et al. MSMSE 20, 085007

Dislocation lines 
& Burgers vectors

Atomistic crystal

Input:

Output:
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Data analysis workflows
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OVITO

dump files dislocation 
networks

MD simulation data analysis

OVITO

intermediate 
data files

MD simulation visualizationPostprocessing
code (serial)

‘fix disloc’
module

2017/2018:

2016/2017:

dislocation 
networks

OVITO

MD simulation visualization‘fix disloc/new’
module

2019:

dislocation 
networks
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How to parallelize the identification of extended 
structures?

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

MD spatial decomposition scheme:

DXA line sweeping process:
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Dislocations as incompatibilities in a discretized elastic field
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Input crystal Set of reference 

vectors

Delaunay triangulation

Algorithm:

1. Compute Delaunay triangulation.

2. Assign an ideal reference vector Lab to each edge:

representation of dislocation segments that is suitable for topological analyses of dislocation networks and fulfills the
Burgers vector conservation law. The described method thus connects fully atomistic models of crystals to mesoscale models
based on discrete dislocations.

2. Algorithm description

The algorithm's input comprises the atomic coordinates fxig of the dislocated crystal (Fig. 1a) and a set L¼ fLig of ideal
crystal vectors, which needs to be specified. In case of the two-dimensional square lattice, which is used here for an
introductory example, this set includes eight vectors as shown in Fig. 1b, each represented by a different color. The basic
algorithm consists of three steps:

1. Construct the Delaunay triangulation for the point set xif g.
2. For every edge a-b of the triangulation, connecting two atoms separated by the spatial vector xab ¼ xb"xa, assign the

best-matching ideal vector from the set L, Lab ¼min argLi ALjxab"Lij, to the edge (Fig. 1c). The edge's opposite direction,
b-a, is associated with the reverse vector, Lba ¼ "Lab.

3. For every triangle abc of the tessellation, compute its Burgers vector

babc ¼ LabþLbcþLca ð1Þ

by summing the ideal lattice vectors assigned to its three edges (in clockwise direction). Triangles with a non-zero
Burgers vector contain a dislocation and are marked accordingly as shown in Fig. 1d.

3. Three-dimensional crystals

In three dimensions, the Delaunay tessellation consists of tetrahedral cells, each being bordered by four triangular facets
(Fig. 2a). In the three-dimensional version of the algorithm, the Burgers vector is computed for every triangular facet
according to Eq. (1), and, if ba0, the facet is said to be intersected by a dislocation. The same is true for the two tetrahedral
cells adjacent to such a dislocated facet. Fig. 2c illustrates how dislocation lines in a three-dimensional crystal are revealed
by the algorithm. The imaginary dislocation line pierces through a sequence of triangular facets, each exhibiting the same
non-zero Burgers vector.

A dislocation line entering a tetrahedron through one facet has to exit it through another (Fig. 2a). A tetrahedral cell can
therefore have 0, 2, 3, or 4 facets with a non-zero Burgers vector. Tetrahedra with exactly two dislocated facets form a linear
chain along the dislocation line. Tetrahedra with more than two dislocated facets contain a dislocation junction. In
agreement with Frank's rule, the Burgers vectors computed for the four oriented facets of every cell always add up to zero.
That is for a tetrahedron abcd:

babcþbcbdþbacdþbadb

¼ ðLabþLbcþLcaÞþðLcbþLbdþLdcÞþðLacþLcdþLdaÞþðLadþLdbþLbaÞ

¼ ðLabþLbaÞþðLbcþLcbÞþðLcaþLacÞþðLbdþLdbÞþðLdcþLcdÞþðLdaþLadÞ ¼ 0 ð2Þ

Fig. 1. (a) Example of a 2d crystal containing a dislocation to be identified. (b) Set of ideal crystal vectors, L, for the square lattice. (c) Delaunay
triangulation of the crystal; edge colors indicate the assigned ideal crystal vectors. (d) The triangular element containing the dislocation exhibits a closure
failure and is marked by the dislocation identification algorithm. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

A. Stukowski / J. Mech. Phys. Solids 70 (2014) 314–319 315
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A. Stukowski. 

JMPS 70 (2014), 314

Dislocated cells



13

Extraction of dislocation segments

1/6 $1$12

1/6 1$21 1/2 0$11

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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Delaunay tessellation with PBCs/domain decomposition
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Ghost atom layer must be wide 
enough to guarantee a consistent 
Delaunay topology in the overlap 
region:

comm_modify cutoff 12.0

Delaunay triangulation:

Geogram library by INRIA (France)
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Parallelized dislocation detection algorithm

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

• Implementation currently 
limited to fully dense and 
periodic single crystals
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Incremental analysis:  How do dislocations move?

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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Reconstructing slip surfaces from MD trajectories

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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Slip surface algorithm

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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Data analysis workflows
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OVITO

MD simulation visualizationCoarse-
graining

‘fix disloc’
module

OVITO

MD simulation visualization‘fix disloc’
module

2019:

2020 and beyond:

dislocation
field

dislocation 
networks

dislocation 
networks
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OVITO

Scientific data analysis and visualization 
software for materials simulations

www.ovito.org
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Data visualization and analysis –
From MD simulations to insights

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Microscopy & 
Imaging

Experiment

Raw output dataSimulation

Data analysis &
Visualization

“in-silico microscopy“
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OVITO Software Package

OVITO is among the most widely-used data analysis 

and visualization solutions for atomistic simulations

§ 3200+ scientific publications using OVITO
§ 3+ new publications per day

A. Stukowski. Modelling Simul. Mater. Sci. Eng. 18 (2010), 015012
0

200

400

600

800

1000

2014 2015 2016 2017 2018

New citations per year

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Source:

Google Scholar
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Processing pipeline

§ Enables a non-destructive workflow
§ Basic building blocks: “modifiers”
§ Modifiers manipulate, compute and analyze data

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Data 
display/
export

The pipeline editor

Modifiers

Data source
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Simulation data input/output

§ Automatic detection of file sequences:

simc_0.dump
simc_100.dump
simc_200.dump
simc_300.dump
...

à simc_*.dump

§ Support for .gz compressed files
§ Built-in SSH/SCP client for reading remote files

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Load local file Load remote file (SSH client)
sftp://user@hostname/path/filename

data + dump
files

data + dump
files

§ More input formats:
§ XYZ (basic and extended variants)
§ NetCDF (written with ‘dump netcdf’ command)
§ CFG, GSD/HOOMD, IMD, PDB, GALAMOST, DL_POLY
§ Ab initio codes: POSCAR, FHI-aims, QE, CASTEP
§ Volumetric: XSF, Cube, CHGCAR
§ Geometry: OBJ, STL, VTK
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OVITO‘s data model
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§ Atomistic models: A set of particle properties, i.e. named data arrays:

§ Number of particle properties is not limited, e.g.

§ Property arrays are also used for storing elements other than particles, e.g.

bonds, surface meshes, voxel grids …

• Position
• Type
• Identifier

• Velocity vector
• Energy
• Charge

• Selection state
• Color
• ……

Data types:
Integer, real

Dimensionalities:
Scalars, vectors, tensors

Value Value Value Value Value …

Value Value Value Value Value …

Property A

Property B

Particle 1 Particle 2 Particle 3 Particle 4 Particle 5 Particle N

… … … … … …Property …
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Other types of particle simulations

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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“The birth of a dinosaur track”

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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OVITO 3 will support user-defined particle shapes

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

§ Particle shapes are loaded 
from geometry files (.obj, 
.stl, .vtk)

§ Particle orientations 
controlled by ‘Orientation’ 
quaternion property.
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Image rendering

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Integrated rendering engines:

OpenGL Tachyon (VMD) Intel OSPRay
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Animation rendering

§ Can produce encoded videos in AVI, MP4 or MOV formats 
(also animated GIFs, but poor quality)

§ Alternative approach: Render a series of image files 
(img0.png, img1.png, img2.png, ...) and use an external 
video encoding tool

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Time slider & timeline:
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Visualization elements

Visual elements are graphical representations of 
data. 

§ Particles
§ Bonds
§ Vector arrows
§ Simulation cell
§ Surface meshes
§ Polyhedra
§ Trajectory lines
§ Dislocation lines
§ …

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

The Visual elements section of the 
pipeline editor:
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Trajectory wrapping/unwrapping/interpolation

§ Fold trajectories: 

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

§ Unfold trajectories: 

§ Visualize trajectory lines: 

§ Interpolate trajectories:

t0

t1

t2
t3

t4
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The Compute Property modifier

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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Stukowski, JOM 66 (2014), 399

Surface mesh construction from atomistic models

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Solid 
volume

Surface 
geometry

Atomistic 
model



38

Python scripting interface

§ OVITO‘s Python interface provides access to almost any program function and the data model
§ Use it to automate analysis or visualization tasks!
§ Use it to integrate OVITO’s capabilities into custom analysis workflows!

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

ovitos = script interpreter

ovito = graphical interface
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User-defined modifier functions

If the built-in modifiers are not sufficient, 
write your own!

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  
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Branched pipelines

Data pipelines can be branched:

1. Visualize the same input dataset in 
different ways

2. Visualize different datasets in the 
same way, side by side

Alexander Stukowski  |  LAMMPS Workshop and Syposium 2019 |  

Data source
Pipeline 1

Pipeline 3

Pipeline 2


